Reviewed by: Zachary Stango, SPT; Bridget Collier, PT, DPT

The act of raising one’s arm overhead is a simple motion in theory, but biomechanically, it requires a great deal of coordinated motions between a multitude of joints that comprise the shoulder complex. Of the intra-articular motions that occur during arm elevation, upward rotation of the scapula is necessary to allow for full range of motion. Adhesive capsulitis, more commonly known as frozen shoulder, is a common condition that is associated with alterations in the kinematics of the shoulder, contributing to scapular dyskinesis and variations in the amount of upward rotation noted during these motions. Decreased motion of the shoulder is associated with alterations in proprioception of the joint, possibly further contributing to the abnormal rotational movements attributed to this condition. The randomized controlled trial conducted by Mohamed et al. (2020) aimed to analyze the effects of improving awareness of scapular motions on pain, disability, and range of motion in individuals with adhesive capsulitis.

The inclusion criteria for this study consisted of patients with the inability to raise their arm above 100 degrees of scaption, with limitations in both active and passive range of motion interfered by pain. 66 individuals aged 40-60 years old were evenly split into two groups, performing their respective routines for 40 minutes, three times a week for two months while also receiving hot packs and scapular mobilizations. Baseline measurements for shoulder flexion, abduction, external rotation, and scapular upward rotation were noted using an inclinometer. The control group performed active shoulder flexion and abduction exercises, while the experimental group performing dynamic scapular recognition utilized a ViMove motion sensor system, an audible biofeedback device that was placed on the spine of the scapula. The participants performed shoulder abduction, with greater upward rotation of the scapula increasing the sound of the device, providing feedback to the participant that they are performing the desired movement.

Follow up metrics were taken at two weeks, two months, and 6 months following the procedure and the results displayed a significant improvement in upward rotation between the dynamic scapular recognition group compared to the control group at all three timelines. The range of motion values proved to be of similar results, with significant improvements of flexion, abduction, and external rotation of the experimental group noted compared to the control group after 6 months. The Shoulder Pain and Disability Index was the validated measure used to assess pain and disability of the shoulder, with scores exhibiting significant reductions in pain and disability of the experimental group compared to the control group at two weeks and two months. Through the use of the audible biofeedback device, the participants were able to receive active interpretations of their scapular kinematics, perhaps aiding in their joint’s proprioceptive ability to decrease elevation of the scapular prior to the rotational component motions needed to successfully execute full arm elevation.

Clinical Bottom Line:

The results of this trial serve as evidence that biofeedback markers can increase one’s awareness of their compensatory mechanisms and therefore, in this case, can assist in mitigating abnormal kinematics in order to restore proper joint biomechanics. Further research is needed to generalize this theory to other movements that also require a successful synchronicity of the surrounding joints, but this can be trialed as an intervention for those individuals who may respond well to a unique style of cueing.


Mohamed AA, Jan YK, El Sayed WH, Wanis MEA, Yamany AA. Dynamic scapular recognition exercise improves scapular upward rotation and shoulder pain and disability in patients with adhesive capsulitis: a randomized controlled trial [published correction appears in J Man Manip Ther. 2020 Jun 10;:1]. J Man Manip Ther. 2020;28(3):146-158.